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2 PROPERTIES OF R

1 Introduction

This chapter defines the real numbers and studies their basic properties. The real numbers
are characterized by three types of properties. The first type is algebraic properties (having
to do with addition and multiplication). These properties are called the field axioms and are
shared by other sets of numbers such as the rational numbers and the complex numbers, but
not, for example, by the integers. The second consists of the order properties, which introduce
an order structure (an inequality), and are also shared by the rational numbers, but not, for
example, by the complex numbers. The third type is completeness that is not satisfied by the
rational numbers and is the more difficult to state.

2 Properties of R

Axiom for addition: A set F is said to satisfy the axioms of addition if the function + :
F × F → F satisfies the following properties:

(a) x+ y = y + x for all x, y ∈ F (commutativity).

(b) (x+ y) + z = x+ (y + z) for all x, y, z ∈ F (associativity).

(c) There is an element of F denoted by 0 that satisfies x+ 0 = x for all x ∈ F (identity).

(d) For every x ∈ F there exists an element of F denoted −x, called its additive inverse,
such that x+ (−x) = 0 (Inverse).

Axiom for Multiplication: A set F is said to satisfy the axioms of multiplication if the
function . : F × F → F satisfies the following properties:

(a) x.y = y.x for all x, y ∈ F (commutativity).

(b) (x.y).z = x.(y.z) for all x, y, z ∈ F (associativity).

(c) There is an element of F denoted by 1 that satisfies x.1 = x for all x ∈ F (identity).

(d) For every x ∈ F there exists an element of F denoted
1

x
, called its multiplicative inverse,

such that x.
1

x
= 1 (Inverse).

Distributive Axiom: A set F with operations + and satisfies the distributive axiom if
x(y + z) = xy + xz for all x, y, z ∈ F.
Order axiom: A field F with operations + and is said to be an ordered field if there is a
subset of F denoted by F+ and called the positive set satisfying the following properties.

1. Closure of F+ under + and i.e, x+ y and xy are in F+ for all x, y ∈ F+.

2. Trichotomy property: For every x in F , exactly one of the following is true:
x = 0, x ∈ F+ or, −x ∈ F+.
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2.1 Completeness Property of R 3 COUNTABLE AND UNCOUNTABLE SET

2.1 Completeness Property of R

The completeness property, often referred to as order completeness, is a fundamental charac-
teristic of the real numbers. Alongside the field and order axioms, the completeness property
serves to fully define the real numbers.

Theorem 1. There is no rational number x such that x2 = 2.

Proof. To prove the above result we use the method of contradiction that there is no positive

rational number x such that x2 = 2. Let us define the set A =

{
q : x =

p

q
, for some p ∈ N

}
.

If x is a rational number, then the set A is a nonempty subset of N. By the well-ordering

principle, it has a least element, which we denote by b. Then x =
p

b
for some p ∈ N.

This implies 2b2 = p2.
Therefore it is clear that 2 is a factor of p2 and since 2 is prime, 2 is a factor of p.
Then we can write p = 2a, for some integer a.
The above equation implies b2 = 2a2 and so b = 2k, for some k ∈ N.
Hence x =

a

k
.

Thus k ∈ A but k < b, contradicting that b is the least element of A. Therefore x is not a
rational number.

Definition 2.1 (Supremum). The supremum or least upper bound of S, denoted supS, is
defined to be an element α of F such that

(i) α is an upper bound for S;

(ii) if d is any other upper bound for S, then d ≥ α.

Similarly, the definition of the infimum or the greatest lower bound can be written as follows:

Definition 2.2 (Infimum). The infimum or greatest lower bound of S, denoted inf S, is defined
to be an element β of F such that

(i) β is a lower bound for S;

(ii) if c is any other lower bound for S, then c ≤ β.

2.2 Statement of completeness property:

An ordered field F is order complete, if every nonempty bounded subset of F has a supremum
in F .
Archimedean property: For any real number x there exists a natural number n such that
n > x.

3 Countable and uncountable set

There are infinitely many sets of real numbers. For the finite set it is clear that the number of
elements of the sets are countable. But for infinite sets this logic is not work due to infinitely
many points within the sets. Hence in this section we shall discuss which sets are countable
and which are not.

Definition 3.1 (Countable set). A set A is countable if there is a bijection f : N → A.
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4 OPEN SETS

It is already shown that if a set A is finite then it is countable. For example the set of
natural number N is countable.
From above definition we conclude that an infinite set is uncountable if it is not countable.

4 Open sets

Definition 4.1 (Open ball). The open ball centered at x with radius ϵ is defined by

B(x, ϵ) = {y ∈ R : |x− y| < ϵ}

Using the basic property of modulus of a function in real number the above expression can be
written as B(x, ϵ) = (x− ϵ, x+ ϵ).

Definition 4.2 (Interior point). A point x is called an interior point of a set S ⊆ R if there
exists an open ball centered at x which wholly lies within the set S.

The collection of all interior point of a set S is called interior of a set S and it is denoted
by Int(S).

Definition 4.3 (Open set). A set S ⊆ R is called open if for each x ∈ S there exists an open
ball centered at x which wholly lies within the set S.

Therefore we conclude that if a set contains all of its interior points is open set. In general
the empty set (Φ) and the whole set (R) are open. Similarly, every open interval in R is open
set. The following theorems are important:

Theorem 2.

� The union of any arbitrary collection of open sets is open.

� The intersection of any finite collection of open sets is open.

Proof. See any book for the proof of above result.

Definition 4.4 (Closed set). A set S ⊆ R is closed if its complement Sc is open.

For example, any closed interval in R is closed. By the similar argument the empty set (Φ)
and the whole set (R) are closed set.

Definition 4.5 (Accumulation or limit point). A point ξ is called a limit point of a set S ⊆ R
if every neighborhood of ξ contains at least one point of the set S except ξ.

Definition 4.6 (Isolated point). A point η is called an isolated point of a set S ⊆ R if it is
not a limit point of S.

Definition 4.7 (Derived set). The set of all limit point of a set S ⊆ R is called derived set of
S. It is denoted by S ′.

Definition 4.8 (Closer or adherent point). A point ξ is called a closer point of a set S ⊆ R if
every neighborhood of ξ contains at least one point of the set S.

From above definition it is clear that a closer point of a set S either a member of the set or
it is a limit point of that set.

Theorem 3 (Bolzano–Weierstrass Theorem). Every bounded subset of real number has at least
one limit point or accumulation point.
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6 EXERCISE

5 Sequence and series

Definition 5.1 (Sequence). A sequence in a set S is a function from a certain kind of subset
of integers into S.

Definition 5.2 (Limit of a sequence). A real number a is called limit of a sequence {an} ∈ R
if for any ϵ > 0 there exists a positive integer N such that |an − a| < ϵ for all n > N .

In this case the sequence {an} is called convergent and this limiting value is written as
lim
n→∞

an = a.

Definition 5.3 (Monotone increasing). A sequence {an} ∈ R is called monotone increasing if
an+1 ≥ an for all n.

Definition 5.4 (Monotone decreasing). A sequence {an} ∈ R is called monotone decreasing if
an+1 ≤ an for all n.

A sequence {an} is called monotone if it is either monotone increasing or decreasing.

Definition 5.5 (Subsequence). A subsequence of a sequence {an} is a sequence of the form
{ank

}, where nk is a strictly increasing sequence of elements of N.

Theorem 4 (Monotone convergence theorem). Every bounded monotone sequence in R is
convergent.

Theorem 5 (Bolzano and Weierstrass). Every bounded sequence of R has a convergent subse-
quence.

Definition 5.6 (Cauchy sequence). A sequence {an} is called Cauchy sequence if for any ϵ > 0
there exists a positive integer N such that |am − an| < ϵ for m,n > N .

A common example of a Cauchy sequence is

{
1

n

}
.

Theorem 6. A sequence {xn} is convergent iff it is Cauchy.

Proof. See any standard book for the proof.

Theorem 7 (Cauchy’s convergence criterion). A sequence {xn} is convergent iff for any ϵ > 0
there exists a positive integer N such that |xm − xn| < ϵ for m,n > N .

6 Exercise

1. Verify that the rational numbers Q satisfy the properties of an ordered field.

2. let x ∈ R. Prove that if x > 1, then xn ≥ x for all n ∈ N.

3. Prove that
√
p /∈ Q when p is prime.

4. Prove that the following property is equivalent to the Archimedean property: for each

x ∈ R, x > 0, there exists n ∈ N such that
1

n
< x.

5. Let A and B be sets. Prove that if B is countable and there exists a function f : A → B
that is injective, then A is countable.
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6 EXERCISE

6. Prove that lim
n→∞

|xn| = 0 if and only if lim
n→∞

xn = 0.

7. Determine whether or not the following sequences are convergent and, if so, find their
limit:

(i) lim
n→∞

(−1)n
5

n

(ii) lim
n→∞

n2 − 3n+ 2

n2 + n

(iii) lim
n→∞

n2 + 1

n3 + n+ 1

(iv) lim
n→∞

(−1)nn

(v) lim
n→∞

1

(−1)nn+ 3n

(vi) lim
n→∞

3
√
n+ 1− 3

√
n

8. Let 0 < a < 1 and xn = a

1

n for n ∈ N. Prove that lim
n→∞

xn exists, and find its value.

9. Newton’s method: Let a > 0, and define a sequence {xn} by xn+1 =
1

2
(xn +

a

xn

), where

x1 is chosen to be any number greater than
√
a. Prove that lim

n→∞
xn =

√
a.

10. Let xn =
n∑

i=1

1

i(i+ 1)
. Show that the given sequence is convergent and find its limit.

11. Find an example of a sequence {xn} such that lim
n→∞

|xn+1 − xn| = 0 but {xn} is not

Cauchy.
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